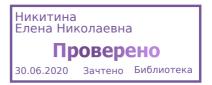
Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «Комсомольский-на-Амуре государственный университет»


На правах рукописи

Глова Егор Михайлович

Исследование влияния напряжения цикла на характер структурной деградации алюминиевых сплавов в условиях малоцикловой усталости

Направление подготовки 22.04.01 - «Материаловедение и технологии материалов»

АВТОРЕФЕРАТ МАГИСТЕРСКОЙ ДИССЕРТАЦИИ

Работа выполнена в ФГБОУ ВО «Комсомольский-на-Амуре государственный университет»

Научный руководитель	докт. техн. наук, доцент Башков Олег Викторович
Рецензент	канд. техн. наук,
	Штанов Олег Викторович
Защита состоится «30» июня 2020 г государственной экзаменационной комиссии «Материаловедение и технологии материалов государственном университете по адресу: 681 27, ауд.	в» в Комсомольском-на-Амуре
Автореферат разосланиюня 2020 г.	
Секретарь ГЭК	Белова Инна Валерьевна

Общая характеристика работы

Актуальность работы. По современным данным около 80-90 % преждевременно разрушенных деталей, узлов и машин происходит вследствие динамических, повторных нагрузок, вызывающих усталостное повреждение материалов. Вопросы обеспечения надежности и долговечности конструкций машиностроении, связаны с выбором материала (сплава), отвечающего высоким характеристикам сопротивления усталости. Одновременно с этим требуется снижение веса и уменьшение себестоимости, что обуславливает потребность совершенствования технологий обработки и методов оценки механических характеристик материалов. Немаловажно иметь возможность определять ресурс изделий, а также давать оценку влияния на ресурс детали, как материала, так и технологического процесса. Несмотря интенсивные исследования В этой области, природа усталости на изучена металлических материалов не В полной мере, делает недостоверными попытки выполнения расчета на прочность при переменных нагрузках на деталь.

Цель работы: исследование влияния напряжения цикла на характер структурной деградации алюминиевых сплавов в условиях малоцикловой усталости.

Основные задачи исследования:

- 1) проанализировать механизмы накопления усталостных разрушений и структурной деградации;
- 2) ознакомиться со сплавом 1163, его особенностями и применением в промышленности;
- 3) провести аналитический обзор методов проведения циклических испытаний и анализа результатов;
 - 4) испытать образцы сплава 1163 на усталость;
- 5) измерить твёрдость в рабочей части образцов и в зоне образования магистральных трещин;

6) выявить структурные особенности накопления усталостных повреждений в образцах сплава 1163.

Объектом исследования являются деформации, образовавшиеся в результате усталостной нагрузки. В нашем случае это дислокации, микротрещины, макротрещины.

Предметом исследования является анализ изменения структуры и механических свойств в зависимости от мощности прилагаемой нагрузки.

Методы решения поставленных задач: измерение микротвердости образцов по шкале Виккерса (HV), структурный количественный анализ методом компьютерной металлографии, построение диаграмм зависимости.

Научная новизна:

- 1) Образцы, испытанные при напряжении 250 МПа, обладают меньшей долговечностью и микротвердостью, измеренными на поверхности образцов, в сравнении с образцами, испытанными при максимальном напряжении цикла 200 МПа.
- 2) было установлено, что в процессе накопления усталостных повреждений поверхности происходит на алюминиевого сплава незначительное упрочнение за счет увеличения плотности дислокаций, вызванных знакопеременными нагрузками и перераспределением напряжений. Однако, образование и рост магистральной трещины приводит в месте роста трещины к разрыхлению структуры алюминиевого сплава 1163 и, как разупрочнению, что подтверждается существенным следствие, к его снижением твердости у берегов трещины по пути ее роста.

Достоверность и обоснованность результатов исследования

Экспериментальные исследования проведены с использованием современного оборудования. Подготовка и испытания образцов проведены согласно стандартам. Определение структурных показателей и механических свойств изученного материала проводилось с применением апробированных методик и оборудования.

Практическая значимость и ценность работы

Результаты работы могут быть применены для определения максимальных предельных деформаций, на которые способен материал, предупреждая его разрушение. Степень готовности на уровне поисковых работ.

Личный вклад автора заключается в формулировании задач диссертационной работы, изготовлении и подготовке образцов марки 1163, проведении механических испытаний и структурных исследований, анализе и обобщении экспериментальных данных, сопоставлении результатов исследований с известными литературными данными и формулировании выводов по полученным результатам.

Структура и объём магистерской диссертации

Диссертационная работа состоит из введения, трёх разделов, заключения и списка литературы. Общий объём работы составляет 61 страниц и включает 36 рисунков, 8 таблиц, список используемой литературы, состоящий из 30 наименований.

Апробация

Принимал участие II Всероссийской национальной научной конференции студентов, И 2019 аспирантов молодых ученых года. По результатам участия в конференции опубликован доклад: Глова Е.М., Гадоев Г.А., Башков О.В. Исследование накопления усталостных повреждений в сплаве 1163 методом акустической эмиссии// В сборнике: Молодежь и наука: проблемы фундаментальных прикладных актуальные И исследований материалы II Всероссийской национальной научной конференции студентов, аспирантов и молодых ученых. 2019. С. 61-64.

Основное содержание диссертации

Во введении обосновывается актуальность темы исследования, формулируются цель и задачи исследования.

Первая глава посвящена анализу состояния проблемы исследования. В первой главе освещены следующие вопросы:

- 1) анализ механизмов накопления усталостных повреждений;
- 2) характеристики усталостного разрушения;
- 3) критерии разрушения при циклическом нагружении;
- 4) методы определения характеристик сопротивления усталостному разрушению.

На основании проведенного анализа работ сформулированы задачи исследований, направленные на решение проблемы — получения достоверных сведений о связи структурных изменений с механическими свойствами алюминиевого сплава 1163 при испытаниях на симметричный изгиб.

Во второй главе подробно описаны:

- 1) алюминиевый деформируемый сплав марки 1163 и его термообработка;
- 2) образцы для исследования (образцы в форме двойной лопатки с радиусной рабочей частью, с прямоугольным сечением, со следующими параметрами: ширина 10 мм, ширина шейки образца 2 мм, толщина образца в шейке ~ 1.8 мм, длина рабочей части образца 20 мм) (рисунок 1)

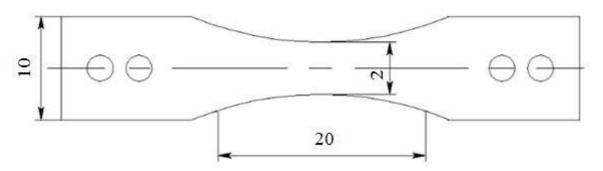
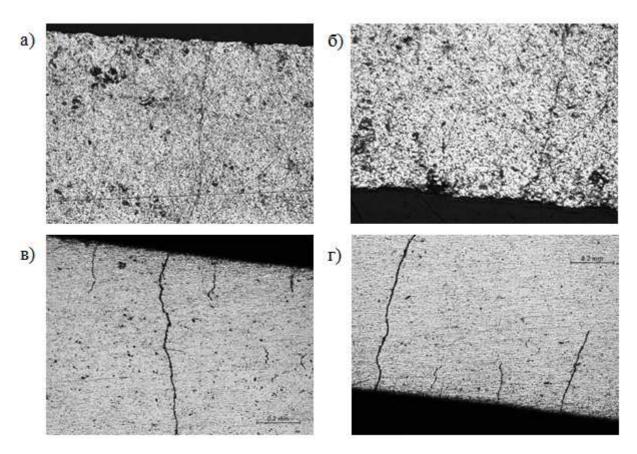


Рисунок 1 – Образец для исследования

- 3) методика подготовки и фотографирования металлографических шлифов:
 - отрезка, шлифовка, полировка и травление образца;
- цифровые изображения микроструктур с помощью металлографических микроскопа NikonMA-200;

- измерение микротвердости с помощью микротвердомера HMV-2 (Shimadzu) по шкале Виккерса (HV).

В третьей главе описываются результаты исследований и выявленные закономерности.


В числе поставленных задач исследования было получение результатов распределения твёрдости в области усталостных повреждений образцов, испытанных при разной амплитуде напряжения цикла и сравнение показателя твёрдости у образцов испытанных при разном напряжении, с целью выявления варианта с более явными признаками деградации.

Для демонстрации результатов экспериментальных исследований были выбраны образцы под следующими номерами: № 21, испытанный при напряжении 200 МПа и № 30, испытанный при напряжении 250 МПа (таблица 1).

Таблица 1 – Экспериментальные показатели

№ Образца	№ 21	№ 30
Время испытания	35 минут	17 минут
Напряжение цикла	200 МПа	250 МПа
Максимальное	82 223	31 902
количество циклов		
Конечная частота	35,86 Гц	34, 43 Гц

При симметричных испытаниях на изгиб образцов, отклонение рычага от вертикали вызывало появление в рабочей части образцов механических напряжений растяжения в выпуклой его части и сжатия в вогнутой. Это означает, что образец начинает разрушаться, в первую очередь, с краёв шейки, образуются микро- и макротрещины (2)

а), б) – верхняя и нижняя макротрещины образца № 30; в), г) – верхняя и нижняя макротрещины образца № 21 Рисунок 2 – Микроструктура сплава 1163

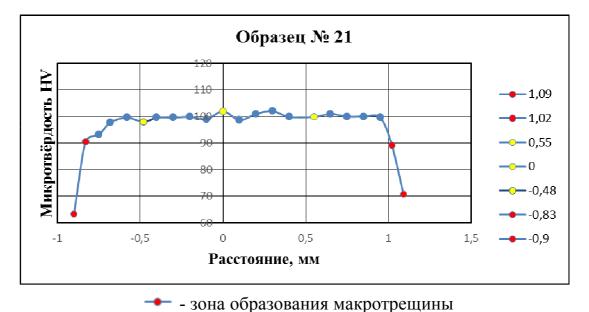
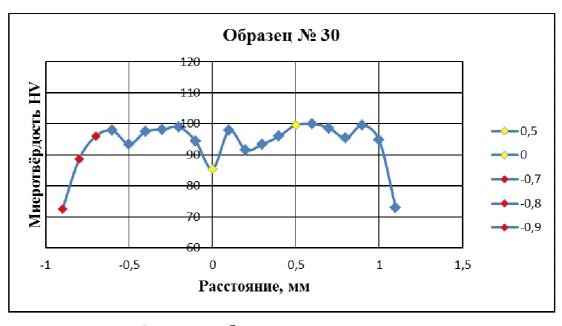
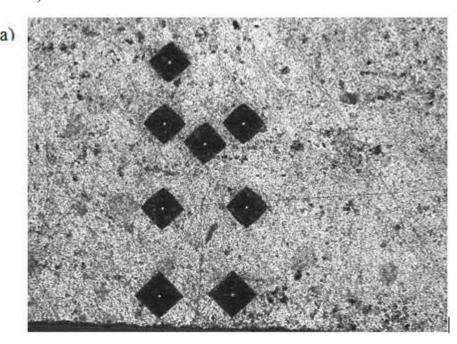



Рисунок 3 - График зависимости микротвердости от расстояния для образца, испытанного при напряжении 200 МПа, взятой поперёк шейки образца, по центру



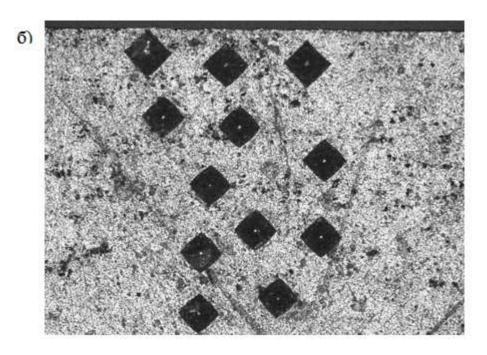

- зона образования макротрещины

Рисунок 4 - График зависимости микротвердости от расстояния для образца, испытанного при напряжении 250 МПа, взятой поперёк шейки образца, по центру

Поперечное сравнение показало, что показатель твёрдости значительно ниже в зонах образования и роста микро — и макротрещин. Это связано с тем, что в этих зонах микроструктура сплава более разрыхлина, за счёт образовавшихся дефектов.

Проводился замер твёрдости в области усталостных повреждений образцов (рисунок 5).

а) — нижняя макротрещина, б) — верхняя макротрещина Рисунок 5 — Замер твердости в области усталостных повреждений образца № 30, испытанного при напряжении 250 МПа

Были построены графики распределения твёрдости в областях усталостных повреждений (рисунок 6 - 7).

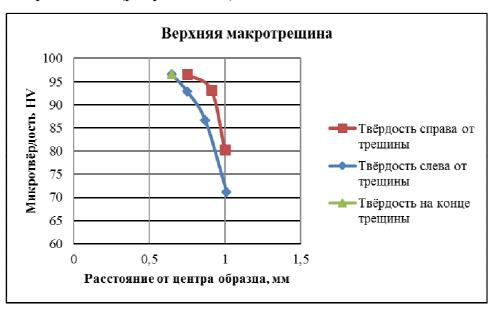


Рисунок 6 — График распределения твёрдости в области образования верхней макротрещины образца № 30

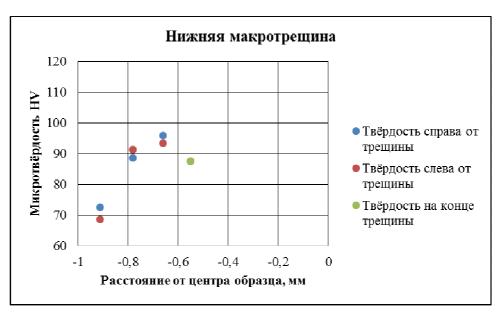


Рисунок 7 – График распределения твёрдости в области образования нижней макротрещины образца № 30

Как видно из графиков, микротвёрдость сплава 1163 в области образования структурных дефектов, падает по значению, от вершины макротрещины до начала места её зарождения. Влияние микротрещин на напряжённое состояние по бокам образованной макротрещины, объясняется ослабления, эффектом связанного уменьшением коэффициента c интенсивности напряжений (КИН) приводящего локальному И К разупрочнению материала в этой области.

Заключение

В магистерской диссертации было проведено исследование влияния напряжения цикла на характер структурной деградации алюминиевого сплава 1163 в условиях малоцикловой усталости.

В результате проведённых исследований были проанализированы механизмы накопления усталостных разрушений; раскрыты, физические, технологические и промышленные особенности Al сплава 1163; проведены циклические испытания и сделан их аналитический обзор; измерена твёрдость в рабочей части образцов, в зоне образования структурных дефектов; выявлены структурные особенности накопления усталостных повреждений в образцах сплава 1163.

В работе сравнивались прочностные свойства образцов при напряжении 200 МПа и 250 МПа, были получены следующие результаты. испытанные при напряжении 250 МПа, обладают меньшей долговечностью и микротвердостью, измеренными на поверхности образцов, в сравнении с образцами, испытанными при максимальном напряжении цикла 200 МПа. Так же было установлено, что в процессе накопления усталостных повреждений поверхности на алюминиевого сплава происходит незначительное упрочнение за счет увеличения плотности дислокаций, вызванных знакопеременными нагрузками и перераспределением напряжений. Однако, образование и рост магистральной трещины приводит в месте роста трещины

к разрыхлению структуры алюминиевого сплава 1163 и, как следствие, к его разупрочнению, что подтверждается существенным снижением твердости у берегов трещины по пути ее роста.