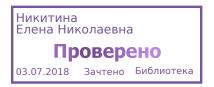
Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Комсомольский-на-Амуре государственный университет»


На правах рукописи

Томченко Александра Максимовна

Структурная неоднородность сварного шва, полученная лазерным излучением

Направление подготовки 22.04.01«Материаловедение и технологииматериалов»

АВТОРЕФЕРАТ МАГИСТЕРСКОЙ ДИССЕРТАЦИИ

Работа выполнена в ФГБОУ ВО «Комсомольский-на-Амуре государственный университет»

Научный руководитель	доктор технических наук, доцент Ким Владимир Алексеевич
Рецензент	кандидат технических наук, Матвеенко Дмитрий Викторович
Защита состоится «» июня 2017 года в часов мин на заседании государственной экзаменационной комиссии по направлению подготовки 22.04.01«Материаловедение и технологииматериалов» в Комсомольском-на-Амуре государственном техническом университете по адресу: 681013, г. Комсомольск-на-Амуре, пр. Ленина, 27, ауд	
Автореферат разослан июня 2018 г.	
Секретарь ГЭК	Белова Инна Валерьевна

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Анализ особенностей конструкций из сплава АМг2 и требований, предъявляемых к ним, показал, что наиболее эффективным способом получения неразъемных соединений малых толщин является использование лазерной сварки.

Для сварных соединений характерно различие механических свойств и микроструктуры металла в разных участках, соизмеримых с размерами соединения, называемое механической и структурной микронеоднородностью. Особенностью соединений, выполненных сваркой плавлением, является наличие зон с различными механическими свойствами и микроструктурой. К шву примыкает ряд зон, свойства и протяженность которых зависят от исходного структурного состояния, теплового режима сварки, длительности пребывания металла при высоких температурах и скорости его охлаждения.

Цель исследования

С помощью метода микроскопического исследования строения и качества сплавов по шлифам и изломам определить качество структурной неоднородности сварного шва, полученного лазерным излучением; измерение микротвёрдости сварного шва полученного лазерной

Задачи исследования:

Оценка неоднородности сварного шва алюминиевого сплава АМг2, полученного после проведения лазерной обработки;

Объектом исследования является структурная неоднородность материала, после лазерной обработки.

Предметом исследований являются образцы алюминиевого сплава марки АМг2.

Методы исследования основаны на оценке микроскопического анализа. Испытания образцов проведены на лабораторной установке для определения микротвердости материала.

Новизна полученных результатов:

- получен новый экспериментальный материал о структурной неоднородности в алюминиевом сплаве AMr2;
- получены данные микротвердости материала в различных областях сварного шва;

Достоверность и обоснованность результатов исследования.

Достоверность полученных и представленных в диссертации результатов подтверждается использованием современных независимых, взаимодополняющих методов исследования, большим объемом непротиворечивых экспериментальных данных, согласованность с данными теоретических исследований. Анализ экспериментальных данных проведен с соблюдением критериев достоверности измерений.

Практическая значимость и ценность работы.

Практическая значимость работы заключается в получении результата - изучения структурной неоднородности сварного шва, полученного лазерным излучением.

Ценность работы заключается в предложении новой методики оценки микроструктуры неоднородности сварного шва.

Личный вклад автора.

Представленные в работе результаты получены лично автором или при его непосредственном участии.

Анализ литературных источников, экспериментальные исследования, а также обработка и анализ результатов экспериментов выполнены лично автором. Постановка задач исследований и обсуждение результатов проведено при непосредственном участии автора совместно с научным руководителем.

Основные положения, выносимые на защиту:

На защиту выносятся следующие основные положения и результаты работы:

- экспериментальный материал о структурной неоднородности сварного шва алюминиевого сплава АМг2, полученного лазерным излучением;

Структура и объём магистерской диссертации.

Диссертационная работа состоит из введения, трёх разделов, заключения и списка литературы. Общий объём работы составляет 71 страницу, включая 22 рисунка, 11 таблиц, список используемой литературы, состоящий из 18 наименований.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении представлено обоснования актуальности темы диссертационной работы, изложены основные направления проведённых исследований, сформулированы цель и задачи исследований.

В первом разделе представлен обзор литературных данных, посвящённых особенностям лазерной сварки, рассмотрены основные характеристики лазерного воздействия, а также классификации лазеров и лазерной сварки.

Во втором разделе диссертационной работы описаны материалы, используемые при проведении исследований, методика проведения испытаний и анализа данных, а также оборудование используемое для проведения исследований.

Материалом являлся алюминиевый деформируемый сплав марки АМг2 по ОСТ 1 90048-90. Для проведения исследования были изготовлены плоские образцы в форме двойной лопатки с радиусной рабочей частью образцы типа III по ГОСТ 25.502-79. Испытания проводили на лабораторной лазерной установке LRS 300 для получения сварного шва. Испытания проводили при различных режимах.

В третьем разделе рассмотрена микроструктурная неоднородность сварного шва, полученного лазерным излучением.

Для процесса сварки были установлены следующие режимы лазерного излучения:

- энергия импульса (Е, Дж);
- длительность импульса (τ , мс* 10^{-3});
- рабочее напряжение накачки (U, B);

частота импульса (f, Гц);

диаметр сфокусированного луча(d, см).

На основании данных установленных режимов были вычислены следующие данные:

- плотность теплового потока (q, Bт);
- мощность излучения (W, Дж);
- удельная энергия (Е, Дж);
- плотности мощности $(B, BT/cm^2)$.

Исходя из полученных данных следует, что образцы алюминиевого сплава АМг2, подвергнутые лазерной сварке, имеют структурные неоднородности. Сформировавшиеся интерметаллиды: β - фаза (Al3Mg2), Al6Mn, Mg2Si, AlFeSiMn, AlxSiyNa2 и другие сложные соединения алюминия с легирующими элементами. Кроме этого, в структуре заметны включения нерастворимых фаз, как правило, содержащих железо и кремний.

В доказательство приведен пример подтверждающий данные наблюдение. Образец, представленный рисунке на 1 c удельным напряжением 165,6 Дж. Образец, представленный на рисунке 2 с удельным напряжением 128,8 Дж. Образец, представленном на рисунке 3, с удельным напряжением 86 Дж.

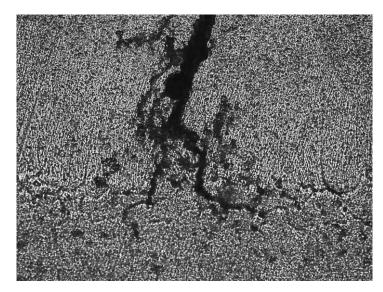


Рисунок 3.5 – Микроструктура при E = 165,6, увеличение x400

Рисунок 2 — Микроструктура АМг2 при ${\bf E}=108,\!28,$ увеличение ${\bf x}200$

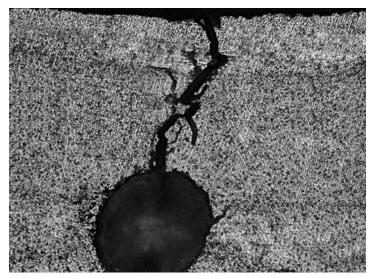


Рисунок 3 — Микроструктура АМг2 при ${\bf E}=86,$ увеличение ${\bf x400}$

Заключение

Лазерная сварка отличается высокой производительностью, низкой трудоемкостью, высоким качеством сварного соединения, если соблюдены требуемые технологические параметры, и минимальным нагревом деталей, обеспечивающим минимальную деформацию. Основным недостатком лазерной сварки следует считать чувствительность к параметрам защитной атмосферы, которая обусловливает качество сварного шва.

Структура сварного шва сплава АМг2, полученного лазерной сваркой, имеет зонное строение. К центральной зоне, состоящей из разориентированных кристаллитов, примыкает зона перехода к основному металлу, структура, которой представляет собой дендриты, вытянутые от линии сплавления в направлении центра шва. Кроме того, из — за термопластического эффекта на участке основного металла, примыкающего к шву, образуется зона термического влияния с отличной от основного металла структурой.

Исследование структуры шва выявило особую слоистую структуру сплава АМг2, которая состоит из рекристаллизованных зерен. Независимость этой структуры от исходного состояния свидетельствуют о самоорганизации формировании области микроструктуры жидкой фазы, которой определяющими являются темпертура пластическая деформация. И Экспериментально установлено, что при нарушении температурновременных параметров на границе сварного шва и основного металла локализуются дефекты в виде несплошностей, образование которых вызвано несовместностью деформации металла шва и прилегающего основного материала. Показано, что механизм разрушения сварного соединения определяется наличием дефектов, которые снижают эффективное сечение сварного соединения.