Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «Комсомольский-на-Амуре государственный университет»

На правах рукописи

Божоев Илгиз Чыныбаевич

Исследование циклической долговечности стали 45 в условиях гигацикловой усталости

Направление подготовки 15.04.03 - «Прикладная механика»

АВТОРЕФЕРАТ МАГИСТЕРСКОЙ ДИССЕРТАЦИИ

Никитина Елена Николаевна **Проверено** 04.07.2023 Зачтено Библиотека

Работа выполнена в ФГБОУ ВО «Комсомольский-на-Амуре государственный университет»

Научный руководитель	докт. техн. наук, доцент Башков Олег Викторович
Защита состоится «28» июня 2023 года в <u>9</u> ч	асов 00 мин на заседаниигосударственной
экзаменационной комиссии по направлению г новых материалов» в Комсомольском-на-Амуре 681013, г. Комсомольск-на-Амуре, пр. Ленина,	одготовки «Материаловедение и технологии государственном университете по адресу:
Автореферат разослан <u>24</u> июня 2023 г.	
Секретарь ГЭК	Бурдасова Александра Александровна

Общая характеристика работы

Актуальность работы. Определение природы зарождения усталостных трещин является одной из актуальных фундаментальных проблем для различных областей приложений, особенно если говорить о сверхмногоцикловой (гигацикловой) усталости, когда трещина образуется внутри материала. Влияние случайных статических или динамических нагрузок на долговечность материалов в условиях сверхмногоцикловой усталости вызывает в настоящее моторостроении время большой интерес авиационном В СВЯЗИ необходимостью оценки pecypca (долговечности), например, лопаток газотурбинных двигателей в условиях эксплуатации, сопровождающихся соударением с твердыми частицами.

В области мало- и многоцикловой усталости уже существуют определенные закономерности, выведенные из механических констант, благодаря которым можно предположить поведение материала. При циклическом нагружении в материале могут происходить процессы как упрочнения, так и разупрочнения. Характер процесса зависит от исходной структуры материала, величины амплитуды максимальных напряжений и продолжительности нагружения [14]. Тем не менее, область изучения сверхмногоциклового ультразвукового воздействия и испытаний на сверхмногоцикловую усталость по-прежнему содержит много вопросов, касающихся кинетики структурных изменений и свойств материалов.

Целью работы является изучение эффекта объемного ультразвукового воздействия на структуру и механические свойства стали 45 в условиях сверхмногоциклового нагружения.

Основные задачи исследования:

- 1) Разработать и сконструировать ультразвуковую установку для формирования стоячих волн в образцах металлических материалов с варьируемым уровнем механического напряжения;
- 2) Провести экспериментальные исследования образцов стали 45 при заданном напряжении;

3) Проанализировать результаты структурных изменений и изменений микротвердости после ультразвукового сверхмногоциклового нагружения образцов и сделать выводы.

Объектом исследования В качестве исследуемого материала выбрана нормализованная сталь 45 в состоянии поставки. Все образцы выполнялись из партии стального проката. Сталь 45 – широко применяемый Высокая конструкционный материал невысокой стоимостью. обрабатываемость резанием позволяет варьировать размеры легко изготавливаемых образцов.

Предметом исследования структура и механические свойства (твердость) стали 45, подверженной ультразвуковой обработке.

Методы исследования. Основаны на подходах экспериментальной механики разрушения. Испытания образцов проведены на лабораторной установке для ультразвуковых испытаний. Структурный количественный анализ проведен с помощью компьютерной металлографии в программе Image-Pro.Plus. Изменение микротвердости образцов проводились по шкале Виккерса. Фрактографический анализ проводился с помощью методов растровой электронной микроскопии. Обработка результатов и их анализ проводились с помощью Excel.

Научная новизна:

Установление влияния ультразвукового сверхмногоциклового нагружения на структуру и свойства материалов при нагрузках, соответствующих напряжениям ниже предела усталости, для последующего использования полученных результатов в процессе разработки новых методов обработки материалов, механическая обработка которых затруднена традиционными методами.

Достоверность и обоснованность результатов исследования

Экспериментальные исследования проведены с использованием современного оборудования. Подготовка и испытания образцов проведены согласно стандартам. Определение структурных показателей и механических свойств изученного материала проводилось с применением апробированных методик и оборудования.

Практическая значимость и ценность работы

Практическая значимость работы заключается в получении результата — изучении структурных изменения в сталях, сформированных в условиях гигацикловой усталости.

Ценность работы заключается в предложении новой методики оценки характера структурных изменений, сформированных при гигацикловой усталости.

Личный вклад автора заключается в формулировании цели и задач диссертационной работы, проведении испытаний и структурных исследований, анализе всех экспериментальных данных и формулировании окончательных выводов по полученным результатам.

Структура и объём магистерской диссертации

Диссертационная работа состоит из введения, трёх разделов, заключенияи списка литературы. Общий объём работы составляет 89 страниц и включает 42 рисунка, 8 таблиц, список используемой литературы, состоящий из 69 наименований.

Апробация

Принимал участие в II Международной научно-практической конференции молодых ученых 2022 года. По результатам участия в конференции опубликован доклад: Божоев И.Ч., Сапожник К.Р., Башков О.В. Кинетика структурных изменений стали 45 при сверхмногоцикловом нагружении // В сборнике: Наука, инновации и технологии: от идей к внедрению материалы II Международной научно-практической конференции молодых ученых Комсомольск-на-Амуре, 14-18 ноября 2022. С. 21-26.

Основное содержание диссертации

Во введении обоснована актуальность темы исследования диссертации, сформулирована цель работы и определены основные задачи исследования, отмечена научная новизна.

Первая глава посвящена анализу состояния проблемы исследования.

В первой главе рассмотрены характер и причины усталостного разрушения, механизмы малоциклового и многоциклового разрушения, методы их исследования, а также особенности гигациклового разрушения и принцип работы применяемых для исследования ультразвуковых машин.

Bo второй главе описаны методики, позволяющая моделировать ультразвуковые концентраторы и образцы для гигацикловых испытаний, и позволяющая провести расчет показателей распределения плотности границ зерен с помощью компьютерной металлографии. Обоснован выбор материала, подвергаемые гигацикловой усталости, а также описаны установки для проведения этих испытаний.

В третьей главе описываются результаты исследований и выявленные закономерности.

Согласно плану исследования, были проведены испытания при различных напряжениях, образцов № 2,3,4,5,6,7 и 8 стали 45 в состоянии поставки, т.е. нормализованные.

Для оценки на изменение твердости по сечению образцов, которые испытывались при разной амплитуде напряжений, было проведена измерение твердости, образцы были разрезаны и измерялась твердость через каждый миллиметр от расстояния излома.

Результаты измерения твердости представлены в таблице 1.

Таблица 1 – Таблица изменения твердости образцов по сечению

Расстоя- ние от излома,	№ образцов						
MM	2	3	4	5	6	8	
	Число циклов до разрушения						
	378245400	100000	24269400	379049400	600000	366000000	
0	249,75	242,75	234	246,25	194,25	268,25	
1	243,5	243,5	202,75	231	201	240,75	
2	241,5	218	219,5	217,75	203	212	
3	226,5	216,75	206	200,75	203	201,75	
4	205	199,5	213	201,5	199,25	197,75	
5	203	199	212,5	197,75	198,75	206	
6	200,75	198,5	207,25	196,75	215,25	205,5	
Относи тельное упрочнен ие (макс к исх): ΔHV/HV исх *100%	24,41	22,29	12,91	25,16	-9,76	30,54	

Образцы 2,5 и 8 (рисунок 1) испытывались при максимальной амплитуде напряжения цикла в пределах от 200 до 250 МПа. Закономерно, что в центральной части образца близкой к зоне излома, твердость данные образцы имеют максимальную. Значение твердости для образца № 5 составляет $3,79*10^8$, для образца № 2 составляет $3,78*10^8$, для образца № 8 составляет $3,66*10^8$, остальные образцы имели меньшую амплетуду напряжений, поэтому их твердость в зоне действий максимальных напряжений оказалась меньше. Это говорит о том, что

образцы притерпевают упрочнение в процессе циклических напряжений «растяжение-сжатие» в условиях ультразвуковых циклических испытаний. По мере удаления от зоны максимальных напряжений в глубь образца и снижение напряжений, твердость понижалась и в зоне находящийся на удалении 4, 6 и более мм, твердость составляло от 197 до 213 МПа.

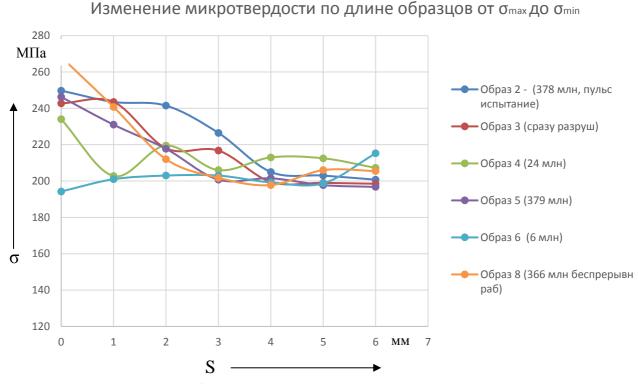


Рисунок 1 – График изменения микротвердости по длине образцов

Результаты анализа плотность границ зерен и микротвердости в зависимости от напряжения.

Для оценки структурных изменений, которые происходят в материале сталь 45 в процессе ультразвукового сверхмногоциклового нагружения проводился анализ микроструктур, которые расположены на различном расстоянии от зоны максимальных напряжений, т.е. от зоны излома. Таким образом, были проанализированы зоны через 1 мм, от 0 до 10 мм.

На рисунке 2 показано распределение плотности границ зерен в области минимальных напряжений, то есть в области, удаленной от зоны максимальных напряжений в образце, и в зоне максимальных напряжений.

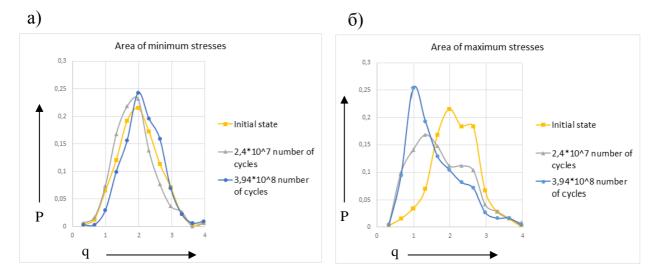


Рисунок 2 – Изменение плотности границ зерен:

- а область минимальных напряжений;
- б область максимальных напряжений

Изменения в структуре приводили к изменению механических свойств материала. Это было выявлено по результатам измерения микротвердости образцов вдоль продольной оси из области максимальных напряжений с шагом 1 мм (рисунок 3).

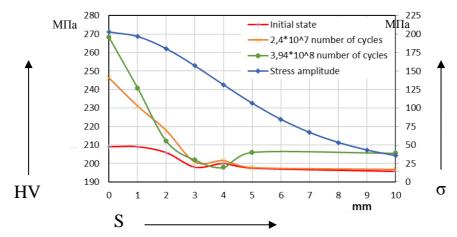


Рисунок 3.3 — Распределение напряжений и значений микротвердости, измеренных вдоль продольной оси образцов, начиная с области максимальных напряжений

На рисунке 4 видно, что структурные изменения, выявляемые параметром плотности границ зерен, наблюдаются при напряжениях 106 МПа и выше. При более

низких напряжениях плотность границ зерен увеличивается, постепенно приближаясь к плотности границ зерен в исходном состоянии стали.

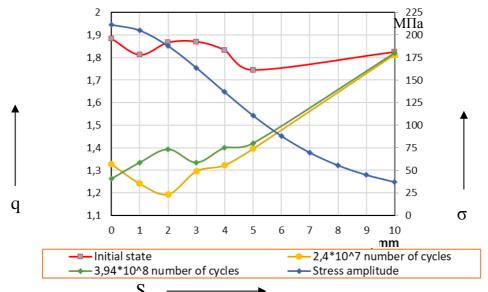


Рисунок 4 – Изменение средней плотности границ зерен вдоль продольной оси образцов

Сравнение результатов испытаний образцов, испытанных при одной и том же числе циклов и одинаковой амплитуде цикла представлены на рисунке 5.

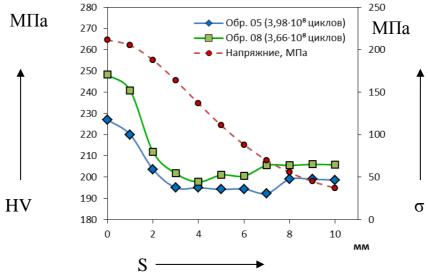


Рисунок 5 — Зависимость микротвердости и распределения напряжения в сечении образцов от расстояния, определяемого максимальной амплитудой циклического нагружения

На рисунке 6 представлена диаграмма плотности распределения плотности границ зерен, построенная по цифровым фотографиям микроструктур образца,

подвергнутого 3,98·10⁸ циклам ультразвукового воздействия. На графике приведены только два распределения, построенные для сечений, отстоящих от места максимальных напряжений на расстояниях 1 мм и 9 мм, что соответствовало 205 МПа и 45 МПа. Графики для остальных сечений не приведены, чтобы не пересыщать диаграмму.

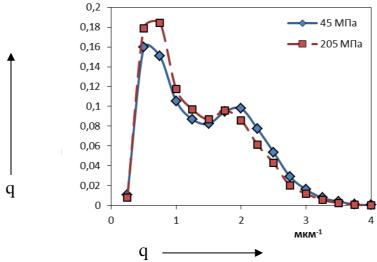


Рисунок 6 — График плотности распределения параметра q для образца, подвергнутого $3.98\cdot10^8$ циклам ультразвукового воздействия

По результатам анализа данных построена зависимость плотности границ зерен от расстояния до излома, представленная на рисунке 7.

Рисунок 7 – Плотность границ зерен q на различном расстоянии от излома

На всех представленных образцах (рисунки 3.8, 3.9 и 3.10) можно видеть область развивающейся трещины, приведены изломы образцов № 2, № 5 и № 6, которые испытывались при различных нагрузках

Характеристика места излома достаточно равномерная, мелкозернистая.

Поверхность с хорошо заметными полосами развивающихся трещин показывающими направление фронта и полосы являются следами развивающейся трещины перпендикулярны ее фронту.

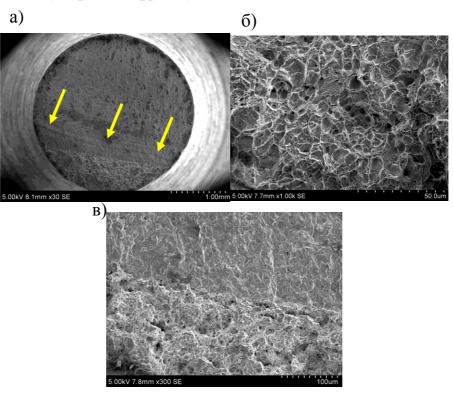


Рисунок 3.8 – Образец №2: а – общий вид излома; б – вязкая зона; в – хрупкая зона а)

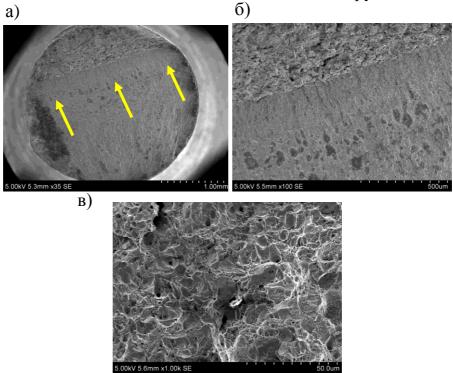


Рисунок 3.9 – Образец 5 Общий вид излома

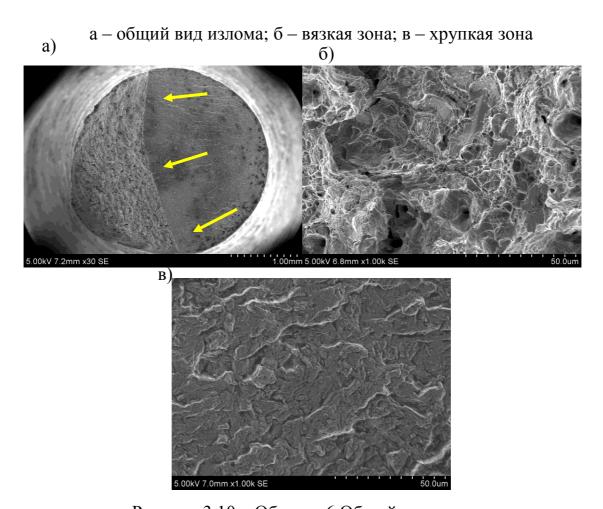


Рисунок 3.10 – Образец 6 Общий вид излома а – общий вид излома; б – вязкая зона; в – хрупкая зона Стрелками показаны полосы, которые расположены вдоль направления развивающейся трещины перпендикулярной ее фронту.

Учитывая, что обработка всех образцов одинаковая в соответствии с этим можно сказать что существенного различия между характером развития трещин не наблюдается. В процессе роста трещины происходило изменение частоты. По мере развития трещины, частота ультразвукового нагружения снижалась в виду того что, появлялась несплошность в материале и увеличение размеров трещины больше половины сечения привело к уходу частоты с диапазона самоподстройки.

Заключение

В магистерской диссертации было проведено исследование циклической долговечности стали 45 в условиях гигацикловой усталости.

На основании результатов данного исследования можно предположить, что такой подход к обработке материалов открывает большие перспективы для тех материалов, которые не поддаются обработке традиционными методами из-за их хрупкости, термонеустойчивости (например, объемные наноструктурные материалы, полученные методами жесткой пластическая деформация).

Проведенные исследования показали, что ультразвуковое воздействие, оказываемое на среднеуглеродистую сталь 45 в поликристаллическом состоянии при ультразвуковом сверхмногоцикловом нагружении, приводит к изменению механических свойств и микроструктуры. Микротвердость материала имеет немонотонную зависимость от амплитуды напряжений и повышается вблизи сечений с максимальным уровнем напряжений. Увеличение амплитуды напряжения, создаваемого ультразвуковым воздействием, способствует снижению плотности границ зерен, вызванному смещению приграничных дислокаций ближе к границе зерен, повышая их плотность.

Сверхмногоцикловое нагружение рассматривалось как возможность изучения поведения материала в условиях ультразвукового объемного воздействия при различном числе циклов и низких уровнях напряжений от 211,5 МПа и ниже.

На основе количественного анализа микроструктур с использованием критерия - плотности границ зерен было установлено, что границы зерен при ультразвуковом воздействии на среднеуглеродистую сталь 45 сглаживаются и плотность границ уменьшается. Изменения структурного состояния стали 45 под действием длительных низкоамплитудных нагрузок привели к локальному повышению микротвердости стали 45.

Установлено, что минимальный порог эффективных напряжений, способных вызвать существенные изменения в структуре стали 45, приводящие к повышению значений микротвердости, составляет не менее 157 МПа. Структурные изменения,

приводящие к снижению плотности границ зерен без существенного изменения микротвердости, происходят в диапазоне от 106 до 157 МПа.

На основании результатов проведенного исследования можно сделать вывод о том, что объемная ультразвуковая обработка материалов открывает большие перспективы ее использования в тех случаях, при которых использование традиционных методов обработки затруднено или нецелесообразно из-за хрупкости материалов, термонеустойчивости, например, объемных наноструктурных материалов, полученных методами интенсивной пластической деформации, и другими ограничениями.