Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Комсомольский-на-Амуре государственный университет»

На правах рукописи

Михайлов Кирилл Александрович

РАЗРАБОТКА СОСТАВА ПОРОШКОВОЙ ПРОВОЛОКИ НА ОСНОВЕ ПЕРЕРАБОТКИ ТЕХНОГЕННОГО СЫРЬЯ

Направление подготовки 15.04.01 «Машиностроение»

АВТОРЕФЕРАТ МАГИСТЕРСКОЙ ДИССЕРТАЦИИ

> Коротченко Лариса Никитовна Проверено 27.06.2022 Зачтено Библиотека

Научный руководитель:

кандидат технических наук, доцент кафедры «Технология сварочного и металлургического производства» ФГБОУ ВО «Комсомольского-на-лосударственного университета», Клешнина Оксана Николаевна

Консультант

Аспирант, старший преподаватель кафедры «Технология сварочного и металлургического производства» ФГБОУ ВО «Комсомольского-на-Амуре государственного университета», Старцев Егор Андреевич

Рецензент

кандидат технических наук, доцент, старший научный сотрудник ИМиМ ДВО РАН, г. Комсомольск-на-Амуре, Жилин Сергей Геннадьевич

Защита состоится «23» июня 2022 г. в 09:00 часов на заседании государственной аттестационной комиссии по направлению подготовки 15.04.01 «Машиностроение» в Комсомольском-на-Амуре государственном университете по адресу: Россия, 681013, Хабаровский край, г. Комсомольск-на-Амуре, проспект Ленина, 27, учебный корпус 2, аудитория 221.

Автореферат разослан 20 июня 2022 г.

Секретарь ГЭК к.т.н., доцент Museus

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы.

В настоящее время в сварочном производстве при формировании наплавок и покрытий восстанавливаемых деталей все больше появляется необходимость в использовании сварочных материалов, отвечающих требуемым свойствам. При создании подобных сварочных материалов, таких как флюсы, электроды и порошковые проволоки в основном всегда используют чистые оксиды и фториды с введением дополнительных легирующих элементов в состав этих материалов. Однако за счет повышения цен и сокращения минерально-сырьевой базы это с каждым годом становится все затратнее. Решению данной проблемы посвящены работы таких отечественных ученых как Верхотурова А.Д, Бабенко Э.Г, Макиенко В.М, Козырева Н.А., и др, и заключается оно в применении, в качестве основы для создания сварочных материалов, техногенных и минералогических отходов. На сегодняшний день необходимость утилизации и переработки минералогических и техногенных отходов металлургических предприятий является актуальной задачей, так как такие отходы имеют пагубное воздействие на окружающую среду и ухудшают экологическую обстановку.

Одним из распространенных и очень быстро развивающихся направлений при использовании сварочных материалов, в основе которых используются переработанные техногенные и минералогические отходы, является электродуговая наплавка порошковыми проволоками под флюсом. Такой процесс может обеспечить оптимальное соотношение свойств поверхности и объема материала детали.

В связи с этим проведение экспериментальных исследований при нанесении и формировании защитных свойств поверхностных слоев металлических деталей и изделий, с использованием порошковых проволок, созданных с использованием переработанных техногенных и минералогических отходов, актуально, и имеет большое научно-практическое значение.

Цель работы:

Целью данной работы является создание и разработка сварочной порошковой проволоки с применением техногенных отходов металлургических производств (шлаков) а так же исследование применения полученных порошковых проволок при электродуговой наплавке под слоем флюса.

Задачи исследования: В соответствии с поставленной целью решались следующие задачи:

- 1. Определить оптимальные составы наполнителей порошковых проволок, в основе которых используются техногенные отходы металлургических производств, и разработать их.
- 2. Исследовать физико-химические и структурные свойства наплавленных покрытий, сформированных порошковыми проволоками различного химического состава.
- 3. Определить эффективность применения порошковых проволок, в основе которых используются техногенные отходы металлургических производств.

Достоверность экспериментальных результатов и обоснованность выводов обеспечиваются корректностью постановки задач исследования, комплексным подходом к их решению с использованием современных методов и методик, анализом литературных данных и критическим сопоставлением установленных в работе

закономерностей фактам, полученным другими исследователями.

Научная новизна работы.

С использованием современных методов исследований получены новые знания о строении, структуре, химическом составе и физико-механических свойствах покрытий, наплавленных порошковыми проволоками электродуговым методом под слоем флюса.

Личный вклад автора состоит в постановке задачи исследования, в проведении экспериментальных исследований с последующим анализом и обработкой полученных данных.

Практическая ценность.

Углублены знания о физических процессах формирования структуры и свойств электродуговых покрытий, наплавленных с использованием порошковых проволок, разработанных с использованием переработанных техногенных отходов металлургических предприятий.

Апробация работы: Основные положения и результаты диссертационной работы докладывались на ежегодных научно — технических конференциях аспирантов и студентов ФГБОУ ВО «КнАГУ» (2021-2022) гг.;

Публикации:

Основное содержание диссертационной работы отражено в 2 публикациях входящих в РИНЦ в сборниках КнАГУ, а также в 1 публикации входящей в список ВАК.

Структура и объем работы. Диссертация состоит из введения, четырех глав, общих выводов, списка литературы и приложений. Материалы работы изложены на 108 страницах машинописного текста, содержат 38 таблиц и иллюстрированы 57 рисунками. Список литературы содержит 77 наименований.

СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность выбранной темы исследования, показана степень ее разработанности, определены цель и задачи исследований, сформулирована научная новизна работы, показана практическая значимость, представлена структура работы.

В первой главе, являющейся обзорной, проведён анализ литературных данных, исходя из которых описаны перспективы создания сварочных материалов из вторичного сырья, проведен обзор характеристики и создания, порошковых проволок для формирования покрытий и наплавок, были проанализированы тенденции развития, и прогнозирование рынка продукции порошковых проволок. В результате проведенного анализа сформулированы и определены основные задачи исследования.

<u>Во второй главе</u> представлено описание процесса разработки наполнителя порошковой проволоки из техногенных отходов металлургического предприятия, а так же сам процесс создания порошковой проволоки.

Основой в сварочных порошковых проволоках является наполнитель. Для создания основы наполнителя, в качестве шихты, был использован металлургический шлак металлургического предприятия «Амурметалл» по выплавке стали, средний химический состав шлака представлен в таблице 1.

CaO	MgO	SiO2	Al2O3	Fe/FeO	MnO
15,4-21,03	2,33-3,81	8,7-14,94	4,87	48,24-66,05	5,56-5,98

Основным процессом при переработке металлургического шлака является переплав используемой шихты. Данный процесс позволит снизить общее содержание железа будущего наполнителя и сбалансировать химический состав. Переплав шихты осуществлялся в индукционной плавильной установке ИТП 4-10. После переплава, полученная смесь была слита в изложницу и оставлена остывать на открытом воздухе в течение 12 часов. После остывания смесь была раздроблена и смешана с жидким стеклом в соотношении 80% шлак и 20% жидкое стекло.

Полученный состав прокален в электропечи СНОЛ 40/12 при температуре 450°C в течении 3 часов.

Полученный наполнитель так же был экспериментально опробован в качестве защиты сварного соединения в автоматической дуговой сварке. Химический состав полученного наполнителя представлен в таблице 2.

Таблица 2 – Химический состав полученного наполнителя

В процентах

С	S	SiO2	CaO	MgO	A12O3	Fe/FeO
0,308	0,048	41,7	15,7	4,11	9,29	23,87

Изготовление порошковой проволоки производилось на лабораторном станке, на базе лаборатории Дальневосточного государственного университета путей и сообщений.

Всего было изготовлено 6 видов порошковых проволок, в которых, в качестве наполнителей, использовали металлургический шлак и вторичный металлургический шлак (флюс) с добавлением графита в пропорциях 0%, 1.8% и 10% от массы основного материала. Добавление графита обусловлено тем, что он способствует формированию карбидных фаз, значительно повышающих твёрдость, прочность и износостойкость металла, а так же, исходя из термодинамических расчетов, он должен способствовать восстановлению оксидов железа из наполнителя.

<u>В третьей главе</u> описаны применяемое оборудование, методы и методики экспериментальных исследований.

Наплавку осуществляли сварочным трактором АДФ-1201 с использованием изготовленной порошковой проволоки на пластины из Ст3 в пять слоев для исключения перемешивания наплавляемого металла со сталью подложки. Режимы сварки: сила тока -350-400 A, напряжение -16-18 B, скорость сварки -19-20 м/ч.

Химический состав наплавленных покрытий определяли оптико-эмиссионным методом на спектроанализаторе Q4 TASMAN 170 Bruker.

Исследование структуры производились на инвертированном металлургическом микроскопе Nikon ECLIPSE MA200. Пробоподготовка образцов для исследования структуры осуществлялась на шлифовально-полировальном станке EcoMet 250 Pro. После полировки образцы подвергались травлению в 5%-ом спиртовом растворе HNO_3 до проявления структуры сварного соединения.

Исследование структуры и элементного химического состава материалов с использованием сканирующей электронной микроскопии велось на сканирующем

электронном микроскопе SEMS-3400N.

Исследование микротвердости в поперечном сечении сварного соединения велись на микротвердомере SHIMADZU HMV-2. Маркировалась поверхность валика с выделением трех зон, а именно начала, середины и корня наплавочного валика. Далее от поверхности маркеров делался отступ с интервалом 0.05-0.1 мм, Расстояние между маркерами варьировалось от 1 до 2 мм. Твёрдость измерялась путем проставления точек с интервалом 0.3-0.4 мм в два ряда, каждый из которых проходил по центру валиков с нагрузкой 1.961 Н.

Твердость наплавленных покрытий определяли на стационарном твердомере по методу Роквелла (HRB).

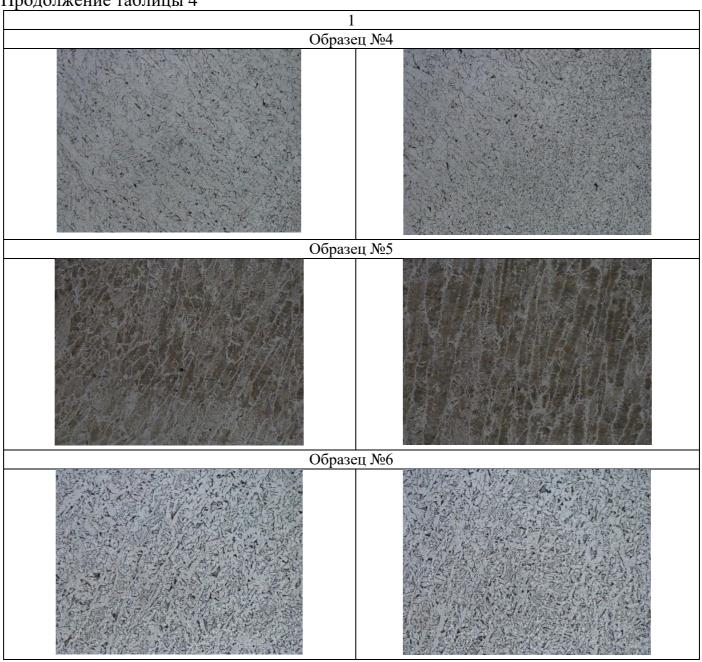
В четвертой главе представлены результаты экспериментальных исследований по наплавке разработанной порошковой проволокой с использованием переработанных техногенных отходов металлургического предприятия.

В процессе использования полученных сварочных материалов были получены 7 образцов с наплавленным покрытием. Внешний вид полученных образцов представлен в таблице 3.

Таблица 3 – Наплавочные образцы полученные в ходе экспериментов


1401	гаолица 5 — паплавочные ооразцы полученные в ходе экспериментов									
No	Сварочный	Образец								
	материал									
1	Проволока с флюсом									
2	Проволока с исходным шлаком									
3	Проволока с флюсом и добавлением 1,8% С	(a)								
4	Проволока с шлаком и добавлением 1,8% С									
5	Проволока с флюсом и добавлением 10% С									
6	Проволока с шлаком и добавлением 10% С									

Визуальный анализ поверхности наплавленных покрытий свидетельствует об их удовлетворительном качестве. Для образцов №2, №3 и №4, характерно большее количество пор, выходящих на поверхность, однако размер пор не является критичным и не относится к браковочным параметрам для наплавки.


Образец №3 является неудовлетворительным.

Микроструктура полученных образцов представлена в таблице 4.

Таблица 4 – Микроструктура образцов

Продолжение таблицы 4

При изучении микроструктуры полученных образцов (таблица 4) установлено, что верхний участок наплавленного металла имеет столбчатое строение, т.к. процесс кристаллизации произошел в направлении, обратном отводу тепла, вглубь жидкой ванны, и металл приобрел столбчатую структуру. Кристаллит состоит из отдельных дендритов, имеющих общую направленность. Группа дендритов, имеет четкую границу. В корне шва, ближе к переходной зоне, составляющие столбчатый кристаллит дендриты разветвлены минимально.

Так как наплавка выполнена в несколько проходов, то наложение каждого последующего шва оказало тепловое влияние на каждый нижний шов. В результате структура нижележащих швов стала мелкозернистой. Микроструктура: феррит и небольшое количество перлита. Полные и собранные снимки микроструктуры образцов приведены в Приложении Б.

В таблице 5 приведены результаты химического анализа.

Таблица 5 — Средний химический состав наплавленного металла

В процентах

															Dilpe	рцентах
С	Si	Mn	S	P	Cr	Ni	V	Mo	Ti	Cu	Al	W	Nb	Co	Zn	Fe
	Образец 0															
0.084	0.192	1.219	<0.150	0.047	0.033	0.036	<0.0050	<0.010	<0.0010	0.171	<0.0050	0.014	<0.0010	0.012	0.0023	98.02
							О	бразеі								
0.116	0.077	0.418	<0.150	0.061	0.112	0.064	<0.0050	<0.010	<0.0015	0.123	<0.0050	0.017	<0.0010	0.012	0.0042	98.82
							О	бразеі	ц2							
0.537	0.073	0.540	<0.150	0.061	0.112	0.078	<0.0050	<0.010	<0.0027	0.100	0.0011	0.024	0.0014	0.014	0.0097	98.34
					ı	ı	О	бразе	ц3		ı	ı				
0.149	0.0122	0.732	<0.150	0.073	0.091	0.035	<0.0050	<0.010	<0.0014	0.072	<0.0050	0.014	<0.0010	0.011	<0.0020	98.53
					I	I	· O	бразе			. · ·	I	•		•	
0.070	0.055	0.532	<0.150	0.053	0.065	0.035	<0.0050	<0.010	<0.0010	0.065	<0.0050	0.013	<0.0010	0.012	<0.0020	98.93
							О	бразеі	ц5							
0.274	0.176	1.020	<0.150	0.056	980'0	0.035	<0.0050	<0.010	<0.0010	890'0	<0.0050	0.013	<0.0010	0.012	<0.0020	60.86
							С	бразеі					-			
0.146	0.094	0.643	<0.150	0.056	0.084	0.039	<0.0050	<0.010	<0.0010	0.071	<0.0050	0.014	<0.0010	0.012	<0.0020	98.66

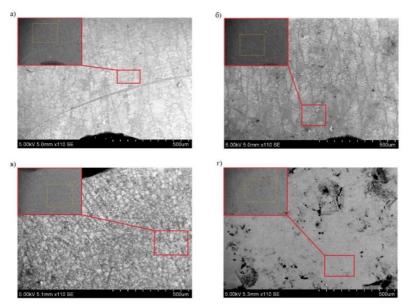


Рисунок 1 — Макроструктура образца 5 а — верхняя зона наплавки валика; б — средняя зона наплавки валика; в — нижняя зона наплавки валика; г — зона основного металла пластины

Таблица 6 – Образец 5

Замер№	С	Si	P	S	Cr	Mn	Fe	Co	Ni	Cu	Mo	W
1	2.22	0.09	0.14	0.00	0.13	1.41	95.04	0.00	0.37	0.02	0.23	0.35
2	1.62	0.34	0.08	0.06	0.27	1.39	95.43	0.63	0.00	0.00	0.00	0.18
3	1.50	0.19	0.15	0.00	0.05	1.99	95.66	0.31	0.00	0.00	0.00	0.16
4	2.00	0.33	0.00	0.14	0.00	0.91	96.07	0.00	0.55	0.00	0.00	0.00

В процессе изучения химического состава поверхностей наплавленного металла и внутренних поверхностей образцов, установлено, что химический состав практически не отличается от основного металла. Не смотря на добавление графита в состав наполнителей, содержание углерода в составе поверхности наплавленного металла почти не повышается. Однако в образце 5 можно увидеть (таблица 6) повышение содержания углерода. Можно сделать вывод о том, что используемые наполнители, за исключением образца 5, не легируют наплавляемый металл, но и не обедняют его.

Таблица 7 – Результаты измерения твердости

Твердость по Роквеллу, шкала HRB									
№ Образца	Замер №1	Замер №2	Замер №3						
Образец 0	83,5	80	80						
Образец 1	77	76	78,5						
Образец 2	66,5	68	71						
Образец 3	81,5	81	79,5						
Образец 4	73	75,5	75						
Образец 5	96	92	93						
Образец 6	75,5	73,5	74						

При исследовании твердости поверхности наплавленных покрытий (таблица 7), установлено, что полученная твердость эквивалентна твердости материала Ст3. Так как твердость материала Ст3 по HB = 131 МПа, то твердость по шкале HRB = 72,7.

Как уже было отмечено, при добавлении графита в состав наполнителей, содержание углерода в составе металла почти не повысилось, за исключением образца №5. Это так же отображается на его твердости, так как она выше, чем у остальных исследуемых образцов.

Результаты исследования микротвердости приведены в таблице 8.

Таблица 8 – Результаты измерения микротвердости

№ Валика	1 точка	2 точка	3 точка	4 точка	5 точка					
1	1 2		4	5	6					
Образец 0										
1 валик	134	153	154	162	152					
2 валик	150	160	154	154	155					
3 валик	179	163	183	160	156					
4 валик	183	187	162	161	176					
		06	разец 1							
1 валик	121	124	129	120	134					
2 валик	132	133	132	138	142					
3 валик	142	140	139	142	155					
4 валик	4 валик 142 15			146	144					

Продолжение таблицы

гродолжение тао	лицы				
1	2	3	4	5	6
5 валик	155	161	162	157	150
		06	бразец 2		
1 валик	137	158	162	136	130
2 валик	155	157	149	151	139
3 валик	152	150	163	142	146
4 валик	157	151	147	154	147
5 валик	151	150	154	140	160
	<u>.</u>	O	бразец 3	<u>.</u>	
1 валик	165	151	149	136	140
2 валик	144	138	146	149	141
3 валик	136	147	137	136	147
4 валик	137	143	138	144	142
5 валик	140	158	157	160	158
	<u> </u>	O	разец 4	<u>.</u>	
1 валик	177	176	126	136	130
2 валик	125	131	135	138	147
3 валик	147	146	138	144	143
4 валик	134	126	133	131	156
5 валик	139	144	148	148	148
		O	бразец 5		
1 валик	205	224	209	205	238
2 валик	283	262	249	230	223
3 валик	215	226	242	212	206
4 валик	301	274	270	232	220
5 валик	229	217	241	228	202
		O	бразец 6		
1 валик	177	192	130	138	173
2 валик	177	154	157	156	159
3 валик	163	162	171	174	148
4 валик	146	158	157	157	158

В результате исследования микротвердости было выявлено, что значение микротвердости наплавленных валиков равномерно распределено на каждом из валиков до основного металла. Значения микротвердости повышается при переходе от валика к валику, так как каждый валик оказывает термическое влияние на последующий, и не превышают 177 HV. Значение микротвердости образца №5 превышают значения, полученные в остальных образцах.

ОСНОВНЫЕ ВЫВОДЫ

1. Анализ литературы показал, что сварочные порошковые проволоки являются наиболее эффективным материалом для формирования наплавок и покрытий для восстановления различных деталей и изделий. Совокупность физико-химических и эксплуатационных свойств формируемых наплавок и покрытий при этом играют важную роль. Одним из перспективных направлений в создании технологий формирования качественных покрытий и наплавок является применение порошковых проволок, содержащих в качестве наполнителей переработанные техногенные отходы металлургических производств (шлаков). Однако широкое распространение этого

направления сдерживается отсутствием данных о зависимостях и закономерностях влияния элементов содержащихся в техногенных отходах на структуру и свойства получаемых покрытий.

- 2. В результате исследований микроструктуры установлено, что верхний участок наплавленного металла имеет столбчатое строение, т.к. процесс кристаллизации произошел в направлении, обратном отводу тепла, вглубь жидкой ванны, и металл приобрел столбчатую структуру. Кристаллит состоит из отдельных дендритов, имеющих общую направленность. Группа дендритов, имеет четкую границу. В корне шва, ближе к переходной зоне, составляющие столбчатый кристаллит дендриты разветвлены минимально. Так как наплавка выполнена в несколько проходов, то наложение каждого последующего шва оказало тепловое влияние на каждый нижний шов. В результате структура нижележащих швов стала мелкозернистой. Микроструктура: феррит и небольшое количество перлита.
- 3. В процессе изучения химического состава поверхностей наплавленного металла и внутренних поверхностей образцов, установлено, что химический состав практически не отличается от основного металла. Не смотря на добавление графита в состав наполнителей, содержание углерода в составе поверхности наплавленного металла почти не повышается. Однако в образце №5 можно увидеть повышение содержания углерода. Можно сделать вывод о том, что используемые наполнители, за исключением образца №5, не легируют наплавляемый металл, но и не обедняют его.
- 4. В результате исследований физических свойств, установлено, что полученная твердость и микротвердость эквивалентна твердости материала Ст3. Значения твердости и микротвердости образца №5 превышают значения остальных образцов.
- 5. Исходя из проведенных исследований, можно сделать вывод, что образец №5, полученный соответствующей проволокой (наполнитель: флюс + 10% графита) имеет самые лучшие структурные, а также физико-химические параметры по сравнению с остальными полученными образцами.

Список работ опубликованных по теме диссертации

- 1. Старцев Е.А., Бахматов П.В., Михайлов К.А., Соболев Б.М. Влияние экспериментального наполнителя для порошковой сварочной проволоки на процесс дуговой наплавки // Ученые записки Комсомольского-на-Амуре государственного технического университета. 2021. № 3 (51). С. 107-109.
- 2. Михайлов К.А., Бахматов П.В., Старцев Е.А., Патентный анализ. Тенденций развития и прогнозирование рынка продукции самозащитных порошковых проволок // Наука, инновации и технологии: от идей к внедрению : материалы Междунар. науч.-практ. конф., Комсомольск-на-Амуре, 7-11 февраля 2022 г. / редкол. : Э. А. Дмитриев (отв. ред.) [и др.]. Комсомольск-на-Амуре : ФГБОУ ВО «КнАГУ», 2022. 550 с.
- 3. Михайлов К.А., Клешнина О.Н, Бахматов П.В., Старцев Е.А., Особенности применения сварочной порошковой проволоки с экспериментальными наполнителями при послойной наплавке // Молодежь и наука: актуальные проблемы фундаментальных и прикладных исследований: материалы V Всерос. нац. науч. конф. студентов, аспирантов и молодых ученых, Комсомольск-на-Амуре, 11-15 апреля 2022 г.: в 4 ч. / редкол.: Э. А. Дмитриев (отв. ред.) [и др.]. Комсомольск-на-Амуре: ФГБОУ ВО «КнАГУ», 2022. Ч. 1.