Пушкарёва Юлия Дмитриевна

Оценка трещиностойкости железобетонных конструкций диаграммным методом

Направление: Строительство Специализация: «Промышленное и гражданское строительство»

АВТОРЕФЕРАТ диссертации на соискание академической степени магистра архитектуры

Диссертация выполнена на кафедре Строительство и архитектура Комсомольской-на-Амуре государственном университете

Научный руководитель: кандидат технических наук, доцент В.А. Дзюба

Защита состоится <u>20.06.2024</u> в <u>8:00</u> часов на заседании Государственной экзаменационной комиссии по защите магистерских диссертаций при Комсомольском-на-Амуре государственном университете (681013, г. Комсомольск-на-Амуре, пр-кт Ленина, д.27)

С диссертацией можно ознакомиться на кафедре Строительство и архитектуры

Общая характеристика работы

Актуальность исследования:

Формирование структуры современных высокотехнологичных бетонов, отличительными признаками существенно часто более которых являются дисперсность зернистых компонентов, повышенные значения площадей поверхности раздела фаз, преобладание мелко- и скрытокристаллических сростков новообразований, возросшая плотность, увеличенное поэтому число физических и физихохимических контактов в единице объема материала, создает противоречивую ситуацию, В которой, одной стороны, c сформированная обеспечивает возрастающую структура прочность материала при сжатии, а с другой стороны, — делает его относительно более хрупким и менее трещиностойким.

Трещиностойкость структуры современных бетонов комплексная категория сопротивления разрушению является главным критерием их эффективности, поскольку механизм разрушения, по сути, определяется процессом развития трещин в структуре материала. Из этого следует, что актуальность исследований содержание предопределяются И ИХ рассмотрения разрушения необходимостью механизма цементных бетонов, закономерной роли их состава и структуры в механизма, обоснования реализации этого базе на механизма разрушения возможных принципов управляющего воздействия на сопротивления разрушению, показатели разработки технологических приемов оптимизации состава и структуры материалов при обеспечении требуемого уровня их конструкционного потенциала и прежде всего трещиностойкости.

Важно при проектировании учесть все данные для предотвращения трещин в железобетонных конструкциях.

Объект исследования: железобетонная балка размером 0.2м*0.6 м.

Предмет исследования: трещиностойкость железобетонных конструкций

Степень изученности проблемы: теоретической основой для диссертации послужили научные работы разных направлений, раскрывающие отдельные аспекты исследуемой темы. К ним относятся следующие группы работ:

- по теории применения железобетона;
- по методам расчета железобетонных конструкций на трещиностойкость;
- нормативная документация, регламентирующая проектирование железобетонных сооружений в России.

Несмотря на большое количество литературы, посвященной железобетонным конструкциям, трудно найти современный научный труд, который бы освещал вопросы по ... ручного железобетонных элементов трещиностойкость, расчета на деформации бетона и арматуры, прогиба, а также жесткость Большинство изученных работ, железобетону (СП 63.13330.2012), значительно устарели и не освещают новейшие методы и принципы расчета и возведения железобетонных кострукций. В литературе, рассматривающей железобетона решения методах расчета конструкцийна железобетонных трещиностойкоксть (O.B. Радайкин, Н.И. Карпенко, Н.А. Бородачев), весьма поверхностно затрагивается данную тему. В результате на данный момент отсутствует работа, которая бы вместила в себя все эти аспекты, которые без сомнения являются главенствующими проектировании железобетона.

Цель исследования: внедрить инновационный метод по расчету железобетонных элементов на трещиностойкость при проектировании.

Задачи исследования:

- Проанализировать существующие диаграммные методы;
- Провести расчет железобетонного элемента на трещиностойкость с различными процентами армирования;

- Провести расчет железобетонного элемента на трещиностойкость с различными процентами армирования в программе ГИД;
- Сравнить ручной метод расчета на трещиностойкость и программы ГИД;
- Выявить наиболее эффективный метод расчета.

Методологической основой работы является комплексный подход. Для решения поставленных задач применялись следующие методы:

- анализ литературных источников
- графический анализ
- анализ научно-технического материала

Научная новизна: принципиальной новизной предлагаемого метода является возможность применение диаграммного метода и билинейных уравнений к расчету наклонных сечений статически неопределимых систем.

Практическая и научная значимость: основные положения проведенного исследования могут лечь в основу дальнейших теоретических разработок. Результаты диссертации могут быть использованы при формировании расчетов железобетонных конструкций на трещиностойкость, прогиб, жесткость.

Границы исследования: основной акцент ставился на изучении взаимосвязи расчетов по СП и программы ГИД.

Структура работы: диссертация разделена на три главы. Первая глава содержит текстовую часть, состоящую из введения, девяти подглав, в которых освещается информация о видах диаграмм, основные положения расчета образования трещин, а также характеристики бетона.

Во второй главе представлен ручной расчет трещиностойкости бетонной балки согласно СП, а также расчет согласно программы ГИД с разным процентом армирования. Глава включает в себя четыре подглавы, в которых подробно описаны данные методы.

В третьей главе представлен пример расчета на трещиностойкость по билинейным уравнениям. Глава включает четыре подглавы.

Содержание исследования

Во введении обосновывается актуальность исследования, ставятся цели и задачи, определяются предмет, объект исследования, научная новизна и практическая ценность.

В первой главе исследована перспектива модернизирования ручного расчета согласно СП по железобетону.

Для монолитных железобетонных конструкций обеспечение трещиностойкости является важнейшей задачей проектирования. Монолитное строительство - метод возведения зданий, при котором основным материалом конструкций является монолитный железобетон. Основная особенность монолитного строительства заключается в том, что местом для производства материала монолитных зданий является строительная площадка. Применение монолитного железобетона позволяет реализовывать многообразие архитектурных форм, а также сократить расход стали и бетона. Но при этом возрастают энергозатраты, особенно в зимнее время, и повышаются трудозатраты на строительной площадке.

Исходя из проведенного анализа, можно выделить несколько основных исторических периодов в применении железобетона в строительстве:

- Впервые в России технология была применена при строительстве здания Государственного банка в Петербурге, построенного в 1881 году фирмой «В. Гюртлер и К°».;
- Тяжелый же монолитный бетон впервые применен в 1886 году при возведении стен железнодорожной будки на Костромской ветви Московско-Ярославской железной дороги.;
- К началу XX века знаменитый американский изобретатель Т.А. Эдисон разработал метод возведения домов из монолитного бетона в многократно оборачиваемых опалубках (патент 1908 года);

- В 1935-1936 годах в Ленинграде был возведён более совершенный 6-этажный дом с применением металлической опалубки высотой на этаж.;
- В конце XX века начинается попытка повторного внедрения монолитного строительства с целью повышения архитектурной выразительности массовой типовой застройки. Метод монолитного строительства, прежде всего, использовали при возведении многоэтажных здании, служащих в застройке композиционными акцентами.;

И так, анализируя перспективу развития монолитного домостроения, можно увидеть, что железобетон развивался годами; с появлением новых технологий в строительной практике, возникали новые проектные решения. Становится понятно, что прочность монолитных железобетонных объектов практически зависит от их несущей способности.

Во второй главе рассмотрены основные методы расчетов железобетонных конструкций на образование трещин, выявлены основные подходы в формировании методов.

Рассмотрены основные положения расчета образования трещин.

Таким образом, становится понятно, что трещиностойкость являются важными формообразующими факторами при проектировании ЖБК.

Спортивные представляют объекты собой сложные инженерные сооружения. В процессе проектирования конструктивной основы приходится преодолевать немалые трудности, связанные с большими размерами специфичными функциональными требованиями. Ввиду этого наиболее рационального выразительного поиск И конструктивного решения является весьма значимой творческой задачей для архитектора. В данной главе раскрыто содержание магистерской диссертации.

В третьей главе раскрыт метод расчета по билинейным уравнениям. В ходе разработки диссертации были учтены принципы формообразования расчетов трещиностойкости,

выявленные во второй главе, учитывался мировой опыт по созданию подобных сооружений, проанализированный в первой главе.

Основные выводы и результаты исследования

- Выполнен расчет трещиностойкости согласно СП (ручным методом);
- Выполнен расчет трещиностойкости согласно в программе ГИД (диаграммным методом);
- Рассмотрен расчет по билинейным уравнениям.

Расчет моментов образования трещин диаграммным методом показал полное совпадение значений с расчетами по СП.

Пояснительная записка проекту стадиона на 45 тыс. мест в г.Екатеринбурге

Архитектурно-планировочное решение разработано в соответствии с нормативной документацией:

- 1. Диаграммный метод расчета стержневых железобетонных элементов : электронное учебнометодическое пособие
- 2. Теория деформирования железобетона с трещинами.
- 3. Проектирование сборных железобетонных конструкций каркасного здания : учеб. пособие
- 4. Диаграммные методы расчета железобетонных конструкций: Учебно-методическое пособие для магистрантов направления подготовки 08.04.01 «Строительство» по дисциплине «Диаграммные методы расчета железобетонных конструкций».
- 5. Методы неразрушающего контроля: учеб. пособие.
- 6. Обследование и мониторинг строительных конструкций зданий и сооружений : учебное пособие.
- 7. К оценке прочности, жесткости, момента образования трещин и их раскрытия в зоне чистого изгиба железобетонных балок с применением нелинейной деформационной модели.

- 8. К построению общей методики расчета статически неопределимых стержневых железобетонных конструкций на основе метода ко-нечных элементов.
- 9. Применение составной функции диаграммы сжатого бетона для деформационной оценки конструкций.
- СП 20. 13330. 2016 Нагрузки и воздействия. Актуализированная редак-ция СНиП 2.01.07-85* (с Изменениями № 1,2,3).
- 11. СП 63.13330.2012 Бетонные и каменные конструкции. Основные положения. Актуализированная редакция СНиП 52-01-2003.
- 12. "Железобетонные конструкции (Общий курс)" Учеб. для вузов.
- 13. Модели деформирования железобетона в приращениях и методы расчета конструкций.
- 14. К определению кривизны бетонных и железобетонных элементов вдоль пролета с учетом совместного действия изгибающих моментов и перерезывающих сил.

Основные публикации по теме исследования

- 1.Оценка трещиностойкости железобетонных конструкций. 2022 год.
- 2.Определение момента образования трещин в железобетонных конструкциях диаграммным методом. 2023 год.
- 3. Расчет железобетонных сечений на основе билинейной диаграммы бетона. 2024 год.